Cortical representation of bimanual movements.

نویسندگان

  • Uri Rokni
  • Orna Steinberg
  • Eilon Vaadia
  • Haim Sompolinsky
چکیده

It is well established that the discharge of neurons in primate motor cortex is tuned to the movement direction of the contralateral arm. Interestingly, it has been found that these neurons exhibit a directional tuning to the ipsilateral arm as well and that the preferred directions to both arms tend to be similar. A recent study showed that motor cortex cells are also directionally selective to bimanual movements, but the relationship between the bimanual and unimanual representations remains unclear. To address this issue, we analyzed the responses of motor cortical neurons recorded from two macaque monkeys during unimanual and bimanual reaching movements. We decomposed the bimanual movement representation into contralateral and ipsilateral directionally tuned components. Our major finding is that the movement of the contralateral arm modifies the tuning of the cells to the ipsilateral arm such that: (1) the offset and modulation depth of the tuning are suppressed; and (2) the preferred directions are randomly shifted. Both these effects eliminate the correlation between the contralateral and ipsilateral representations during bimanual movements. We suggest that the modification of the ipsilateral arm representation is caused by the recruitment of local inhibition that conveys callosal inputs during bimanual movements. This hypothesis is supported by the analysis of a model of two motor cortical networks, coupled with sparse random interhemispheric projections that reproduce the main features observed in the data. Finally, we show that the modification of the ipsilateral arm representation reduces the interference between the movements of both arms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements.

To obtain a better understanding of the cortical representation of bimanual coordination, we measured regional cerebral blood flow (rCBF) with 15O-labeled water and positron emission tomography (PET). To detect areas with changes of rCBF during bimanual finger movements of different characteristics, we studied 12 right-handed normal volunteers. A complete session consisted of three rest scans a...

متن کامل

A brain-machine interface enables bimanual arm movements in monkeys.

Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to paralyzed patients. So far, BMIs have enabled only one arm to be moved at a time. Control of bimanual arm movements remains a major challenge. We have developed and tested a bimanual BMI that enables rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extr...

متن کامل

Two Distinct Ipsilateral Cortical Representations for Individuated Finger Movements

Movements of the upper limb are controlled mostly through the contralateral hemisphere. Although overall activity changes in the ipsilateral motor cortex have been reported, their functional significance remains unclear. Using human functional imaging, we analyzed neural finger representations by studying differences in fine-grained activation patterns for single isometric finger presses. We de...

متن کامل

A Cognitive Neuroscience Perspective on Bimanual Coordination and Interference

We argue that bimanual coordination and interference depends critically on how these actions are represented on a cognitive level. We first review the literature on spatial interactions, focusing on the difference between movements directed at visual targets and movements cued symbolically. Interactions manifest during response planning are limited to the latter condition. These results suggest...

متن کامل

Single-unit activity related to bimanual arm movements in the primary and supplementary motor cortices.

Single units were recorded from the primary motor (MI) and supplementary motor (SMA) areas of Rhesus monkeys performing one-arm (unimanual) and two-arm (bimanual) proximal reaching tasks. During execution of the bimanual movements, the task related activity of about one-half the neurons in each area (MI: 129/232, SMA: 107/206) differed from the activity during similar displacements of one arm w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 37  شماره 

صفحات  -

تاریخ انتشار 2003